Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Elife ; 122024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497812

ABSTRACT

Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.


Subject(s)
Down Syndrome , Animals , Mice , Female , Pregnancy , Down Syndrome/drug therapy , Down Syndrome/genetics , Trisomy , Genitalia , Head , Antioxidants , Disease Models, Animal
2.
Neurobiol Dis ; 192: 106431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331351

ABSTRACT

Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.


Subject(s)
Microcephaly , Animals , Female , Humans , Male , Mice , Diffusion Tensor Imaging , Lipid Droplets , Mice, Knockout , Microcephaly/genetics , Microcephaly/metabolism , Neurons/metabolism
3.
bioRxiv ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38293093

ABSTRACT

Background: Elevated choline kinase alpha (ChoK) is observed in most solid tumours including glioblastomas (GBM), yet until recently, inhibitors of ChoK have demonstrated limited efficacy in GBM models. Given that hypoxia is associated with GBM therapy resistance, we hypothesised that tumour hypoxia could be responsible for such limitations. We therefore evaluated in GBM cells, the effect of hypoxia on the function of JAS239, a potent ChoK inhibitor. Methods: Rodent (F98 and 9L) and human (U-87 MG and U-251 MG) GBM cell lines were subjected to 72 hours of hypoxia conditioning and treated with JAS239 for 24 hours. NMR metabolomic measurements and analyses were performed to evaluate the signalling pathways involved. In addition, cell proliferation, cell cycle progression and cell invasion were measured in cell monolayers and 3D spheroids, with or without JAS239 treatment in normoxic or hypoxic cells to assess how hypoxia affects JAS239 function. Results: Hypoxia and JAS239 treatment led to significant changes in the cellular metabolic pathways, specifically the phospholipid and glycolytic pathways associated with a reduction in cell proliferation via induced cell cycle arrest. Interestingly, JAS239 also impaired GBM invasion. However, JAS239 effects were variable depending on the cell line, reflecting the inherent heterogeneity observed in GBMs. Conclusion: Our findings indicate that JAS239 and hypoxia can deregulate cellular metabolism, inhibit proliferation and alter cell invasion. These results may be useful for the design of new therapeutic strategies based on ChoK inhibition that can act on multiple pro-tumorigenic features.

4.
Cancer Immunol Immunother ; 72(10): 3387-3393, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37477652

ABSTRACT

BACKGROUND: Brain metastases are the most common intracranial tumors with an increasing incidence. They are an important cause of morbidity and mortality in patients with solid organ cancer and a focus of recent clinical research and experimental interest. Immune checkpoint inhibitors are being increasingly used to treat solid organ cancers. METHODS: To determine whether immune checkpoint inhibitors were biologically effective in the brain, we compared melanoma brain metastasis samples where treatment with ipilimumab had occurred preoperatively to those who had not received any immune modulating therapy and looked for histopathological (invasion, vascularity, metastasis inducing proteins, matrix metalloproteinases, immune cell infiltration, tissue architecture) and advanced MRI differences (diffusion weighted imaging). RESULTS: Co-localized tissue samples from the same regions as MRI regions of interest showed significantly lower vascularity (density of CD34 + vessels) in the core and higher T-cell infiltration (CD3 + cells) in the leading edge for ipilimumab-treated brain metastasis samples than for untreated cases and this correlated with a higher tumor ADC signal at post-treatment/preoperative MRI brain. CONCLUSIONS: Treatment of a melanoma brain metastasis with ipilimumab appears to cause measurable biological changes in the tumor that can be correlated with post-treatment diffusion weighted MRI imaging, suggesting both a mechanism of action and a possible surrogate marker of efficacy.


Subject(s)
Brain Neoplasms , Melanoma , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/therapeutic use , T-Lymphocytes , Diffusion Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Melanoma/diagnostic imaging , Melanoma/drug therapy , Melanoma/secondary
5.
J Stem Cells Regen Med ; 19(1): 3-13, 2023.
Article in English | MEDLINE | ID: mdl-37366409

ABSTRACT

Human pluripotent stem cells (hPSCs) are a promising source of somatic cells for clinical applications and disease modelling. However, during culture they accumulate genetic aberrations such as amplification of 20q11.21 which occurs in approximately 20% of extensively cultured hPSC lines and confers a BCL2L1-mediated survival advantage. During the production of the large number of cells required for transplantation and therapy these aberrations may become unavoidable which has important safety implications for therapies and may also impact upon disease modelling. Presently, these risks are poorly understood; whilst it is apparent that large-scale genetic aberrations can pose an oncogenic risk, the risks associated with smaller, more insidious changes have not been fully explored. In this report, the effects of engraftment of human embryonic stem cells (hESCs) and hESC-derived hepatocyte-like cells (HLCs) with and without amplification of the 20q11.21 minimal amplicon and isochromosome 20q (i20q) in SCID-beige mice are presented. The cells were tracked in vivo using a luminescent reporter over a period of approximately four months. Intrasplenic injection of hESCs showed greater engraftment potential and the formation of more severely disruptive lesions in the liver and spleen of animals injected with cells containing 20q11.21 compared with i20q and wild type. HLCs with 20q11.21 engrafted more successfully and formed more severely disruptive lesions than wild type cells or cells with i20q. These results reinforce the notion that karyotyping of therapeutic hPSC is required for transplant, and suggest that screening for known common aberrations is necessary. Further work to identify commonly arising genetic aberrations should be performed and routine screening for hPSCs intended for therapeutic use should be used.

6.
J Transl Med ; 21(1): 287, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37118754

ABSTRACT

BACKGROUND: Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS: Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS: Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS: Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Multiparametric Magnetic Resonance Imaging , Humans , Glioblastoma/pathology , Brain Neoplasms/pathology , Disease Progression , Magnetic Resonance Imaging , Retrospective Studies
7.
NMR Biomed ; 36(3): e4855, 2023 03.
Article in English | MEDLINE | ID: mdl-36269130

ABSTRACT

Changes in glioblastoma (GBM) metabolism was investigated in response to JAS239, a choline kinase inhibitor, using MRS. In addition to the inhibition of phosphocholine synthesis, we investigated changes in other key metabolic pathways associated with GBM progression and treatment response. Three syngeneic rodent models of GBM were used: F98 (N = 12) and 9L (N = 8) models in rats and GL261 (N = 10) in mice. Rodents were intracranially injected with GBM cells in the right cortex and tumor growth was monitored using T2 -weighted images. Animals were treated once daily with intraperitoneal injections of 4 mg/kg JAS239 (F98 rats, n = 6; 9L rats, n = 6; GL261 mice, n = 5) or saline (control group, F98 rats, n = 6; 9L rats, n = 2; GL261 mice, n = 5) for five consecutive days. Single voxel spectra were acquired on Days 0 (T0, baseline) and 6 (T6, end of treatment) from the tumor as well as the contralateral normal brain using a PRESS sequence. Changes in metabolite ratios (tCho/tCr, tCho/NAA, mI/tCr, Glx/tCr and (Lip + Lac)/Cr) were used to assess metabolic pathway alterations in response to JAS239. Tumor growth arrest was noted in all models in response to JAS239 treatment compared with saline-treated animals, with a significant reduction (p < 0.05) in the F98 model. A reduction in tCho/tCr was observed with JAS239 treatment in all GBM models, indicating reduced phospholipid metabolism, with the highest reduction in 9L followed by GL261 and F98 tumors. A significant reduction (p < 0.05) in the tCho/NAA ratio was observed in the 9L model. A significant reduction in mI/tCr (p < 0.05) was found in JAS239-treated F98 tumors compared with the saline-treated animals. A non-significant trend of reduction in Glx/tCr was observed only in F98 and 9L tumors. JAS239-treated F98 tumors also showed a significant increase in Lip + Lac (p < 0.05), indicating increased cell death. This study demonstrated the utility of MRS in assessing metabolic changes in GBM in response to choline kinase inhibition.


Subject(s)
Brain Neoplasms , Glioblastoma , Rats , Mice , Animals , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Rodentia/metabolism , Choline Kinase , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Receptors, Antigen, T-Cell , Choline/metabolism
8.
Cancers (Basel) ; 14(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36497318

ABSTRACT

Malignant pleural mesothelioma (MPM) has limited treatment options and poor prognosis. Frequent inactivation of the tumour suppressors BAP1, NF2 and P16 may differentially sensitise tumours to treatments. We have established chick chorioallantoic membrane (CAM) xenograft models of low-passage MPM cell lines and protocols for evaluating drug responses. Ten cell lines, representing the spectrum of histological subtypes and tumour suppressor status, were dual labelled for fluorescence/bioluminescence imaging and implanted on the CAM at E7. Bioluminescence was used to assess viability of primary tumours, which were excised at E14 for immunohistological staining or real-time PCR. All MPM cell lines engrafted efficiently forming vascularised nodules, however their size, morphology and interaction with chick cells varied. MPM phenotypes including local invasion, fibroblast recruitment, tumour angiogenesis and vascular remodelling were evident. Bioluminescence imaging could be used to reliably estimate tumour burden pre- and post-treatment, correlating with tumour weight and Ki-67 staining. In conclusion, MPM-CAM models recapitulate important features of the disease and are suitable to assess drug targets using a broad range of MPM cell lines that allow histological or genetic stratification. They are amenable to multi-modal imaging, potentially offering a time and cost-efficient, 3Rs-compliant alternative to rodent xenograft models to prioritise candidate compounds from in vitro studies.

9.
Br J Radiol ; 95(1140): 20220516, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36354164

ABSTRACT

OBJECTIVES: To investigate the prognostic utility of DTI and DSC-PWI perfusion-derived parameters in brain metastases patients. METHODS: Retrospective analyses of DTI-derived parameters (MD, FA, CL, CP, and CS) and DSC-perfusion PWI-derived rCBVmax from 101 patients diagnosed with brain metastases prior to treatment were performed. Using semi-automated segmentation, DTI metrics and rCBVmax were quantified from enhancing areas of the dominant metastatic lesion. For each metric, patients were classified as short- and long-term survivors based on analysis of the best coefficient for each parameter and percentile to separate the groups. Kaplan-Meier analysis was used to compare mOS between these groups. Multivariate survival analysis was subsequently conducted. A correlative histopathologic analysis was performed in a subcohort (n = 10) with DTI metrics and rCBVmax on opposite ends of the spectrum. RESULTS: Significant differences in mOS were observed for MDmin (p < 0.05), FA (p < 0.01), CL (p < 0.05), and CP (p < 0.01) and trend toward significance for rCBVmax (p = 0.07) between the two risk groups, in the univariate analysis. On multivariate analysis, the best predictive survival model was comprised of MDmin (p = 0.05), rCBVmax (p < 0.05), RPA (p < 0.0001), and number of lesions (p = 0.07). On histopathology, metastatic tumors showed significant differences in the amount of stroma depending on the combination of DTI metrics and rCBVmax values. Patients with high stromal content demonstrated poorer mOS. CONCLUSION: Pretreatment DTI-derived parameters, notably MDmin and rCBVmax, are promising imaging markers for prognostication of OS in patients with brain metastases. Stromal cellularity may be a contributing factor to these differences. ADVANCES IN KNOWLEDGE: The correlation of DTI-derived metrics and perfusion MRI with patient outcomes has not been investigated in patients with treatment naïve brain metastasis. DTI and DSC-PWI can aid in therapeutic decision-making by providing additional clinical guidance.


Subject(s)
Brain Neoplasms , Diffusion Tensor Imaging , Humans , Diffusion Tensor Imaging/methods , Retrospective Studies , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Angiography
10.
J Clin Ultrasound ; 50(9): 1353-1359, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36205388

ABSTRACT

In view of the inherent limitations associated with performing dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in clinical settings, current study was designed to provide a proof of principle that Doppler sonography and DCE-MRI derived perfusion parameters yield similar hemodynamic information from metastatic lymph nodes in squamous cell carcinomas of head and neck (HNSCCs). Strong positive correlations between volume fraction of plasma space in tissues (Vp ) and blood volume (r = 0.72, p = 0.02) and between Vp and %area perfused (r = 0.65, p = 0.04) were observed. Additionally, a moderate positive correlation trending towards significance was obtained between volume transfer constant (Ktrans ) and %area perfused (r = 0.49, p = 0.09).


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/drug therapy , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/drug therapy , Contrast Media , Induction Chemotherapy , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Magnetic Resonance Imaging/methods
11.
Cancers (Basel) ; 14(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35267531

ABSTRACT

To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals. No significant differences in these parameters were found for the GL261 tumour, indicating that this model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing therapeutic response.

12.
Int J Mol Sci ; 22(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918043

ABSTRACT

Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient's immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.


Subject(s)
Brain Neoplasms/diagnostic imaging , Diagnostic Imaging , Glioblastoma/diagnostic imaging , Animals , Brain Neoplasms/etiology , Brain Neoplasms/therapy , Clinical Decision-Making , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Diagnostic Imaging/methods , Diagnostic Imaging/standards , Disease Management , Disease Susceptibility , Glioblastoma/etiology , Glioblastoma/therapy , Humans , Immunotherapy/adverse effects , Immunotherapy/methods , Magnetic Resonance Imaging , Positron-Emission Tomography , Prognosis , Treatment Outcome
13.
Hepatology ; 74(2): 973-986, 2021 08.
Article in English | MEDLINE | ID: mdl-33872408

ABSTRACT

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Subject(s)
Liver Regeneration/drug effects , Liver/drug effects , NF-E2-Related Factor 2/agonists , Oleanolic Acid/analogs & derivatives , Adult , Aged, 80 and over , Animals , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Hepatectomy , Hepatocytes , Humans , Liver/physiology , Liver/surgery , Liver Regeneration/genetics , Male , Mice , Mice, Knockout , Middle Aged , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oleanolic Acid/administration & dosage , Primary Cell Culture
14.
Magn Reson Med ; 86(1): 382-392, 2021 07.
Article in English | MEDLINE | ID: mdl-33533114

ABSTRACT

PURPOSE: To establish high-frequency magnetic resonance electrical properties tomography (MREPT) as a novel contrast mechanism for the assessment of glioblastomas using a rat brain tumor model. METHODS: Six F98 intracranial tumor bearing rats were imaged longitudinally 8, 11 and 14 days after tumor cell inoculation. Conductivity and mean diffusivity maps were generated using MREPT and Diffusion Tensor Imaging. These maps were co-registered with T2 -weighted images and volumes of interests (VOIs) were segmented from the normal brain, ventricles, edema, viable tumor, tumor rim, and tumor core regions. Longitudinal changes in conductivity and mean diffusivity (MD) values were compared in these regions. A correlation analysis was also performed between conductivity and mean diffusivity values. RESULTS: The conductivity of ventricles, edematous area and tumor regions (tumor rim, viable tumor, tumor core) was significantly higher (P < .01) compared to the contralateral cortex. The conductivity of the tumor increased over time while MD from the tumor did not change. A marginal positive correlation was noted between conductivity and MD values for tumor rim and viable tumor, whereas this correlation was negative for the tumor core. CONCLUSION: We demonstrate a novel contrast mechanism based on ionic concentration and mobility, which may aid in providing complementary information to water diffusion in probing the microenvironment of brain tumors.


Subject(s)
Brain Neoplasms , Diffusion Tensor Imaging , Animals , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Rats , Tomography , Tumor Microenvironment
15.
World Neurosurg ; 146: e555-e564, 2021 02.
Article in English | MEDLINE | ID: mdl-33152494

ABSTRACT

BACKGROUND: Contrast enhancement in a brain tumor on magnetic resonance imaging is typically indicative of a high-grade glioma. However, a significant proportion of nonenhancing gliomas can be either grade II or III. While gross total resection remains the primary goal, imaging biomarkers may guide management when surgery is not possible, especially for nonenhancing gliomas. The utility of diffusion tensor imaging and dynamic susceptibility contrast magnetic resonance imaging was evaluated in differentiating nonenhancing gliomas. METHODS: Retrospective analysis was performed on imaging data from 72 nonenhancing gliomas, including grade II (n = 49) and III (n = 23) gliomas. Diffusion tensor imaging and dynamic susceptibility contrast data were used to generate fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity as well as cerebral blood volume, cerebral blood flow, and mean transit time maps. Univariate and multivariate logistic regression and area under the curve analyses were used to measure sensitivity and specificity of imaging parameters. A subanalysis was performed to evaluate the utility of imaging parameters in differentiating between different histologic groups. RESULTS: Logistic regression analysis indicated that tumor volume and relative mean transit time could differentiate between grade II and III nonenhancing gliomas. At a cutoff value of 0.33, this combination provided an area under the curve of 0.71, 70.6% sensitivity, and 64.3% specificity. Logistic regression analyses demonstrated much higher sensitivity and specificity in the differentiation of astrocytomas from oligodendrogliomas or identification of grades within these histologic subtypes. CONCLUSIONS: Diffusion tensor imaging and dynamic susceptibility contrast imaging can aid in differentiation of nonenhancing grade II and III gliomas and between histologic subtypes.


Subject(s)
Brain Neoplasms/pathology , Diffusion Tensor Imaging , Glioma/pathology , Magnetic Resonance Imaging , Adult , Aged , Astrocytoma/classification , Astrocytoma/pathology , Brain Neoplasms/classification , Contrast Media , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Glioma/classification , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Sensitivity and Specificity
16.
Head Neck ; 42(11): 3295-3306, 2020 11.
Article in English | MEDLINE | ID: mdl-32737951

ABSTRACT

BACKGROUND: The primary purpose was to evaluate the prognostic potential of diffusion imaging (DWI) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in predicting distant metastases in squamous cell carcinoma of head and neck (HNSCC) patients. The secondary aim was to examine differences in DWI and DCE-MRI-derived parameters on the basis of human papilloma virus (HPV) status, differentiation grade, and nodal stage of HNSCC. METHODS: Fifty-six patients underwent pretreatment DWI and DCE-MRI. Patients were divided into groups who subsequently did (n = 12) or did not develop distant metastases (n = 44). Median values of apparent diffusion coefficient (ADC), volume transfer constant (Ktrans ), and mean intracellular water-lifetime (τi ) and volume were computed from metastatic lymph nodes and were compared between two groups. Prognostic utility of HPV status, differentiation grading, and nodal staging was also evaluated both in isolation or in combination with MRI parameters in distinguishing patients with and without distant metastases. Additionally, MRI parameters were compared between two groups based on dichotomous HPV status, differentiation grade, and nodal stage. RESULTS: Lower but not significantly different Ktrans (0.51 ± 0.15 minute-1 vs 0.60 ± 0.05 minute-1 ) and not significantly different τi (0.13 ± 0.03 second vs 0.19 ± 0.02 second) were observed in patients who developed distant metastases than those who did not. Additionally, no significant differences in ADC or volume were found. τi, was the best parameter in discriminating two groups with moderate sensitivity (67%) and specificity (61.4%). Multivariate logistic regression analyses did not improve the overall prognostic performance for combination of all variables. A trend toward higher τi was observed in HPV-positive patients than those with HPV-negative patients. Also, a trend toward higher Ktrans was observed in poorly differentiated HNSCCs than those with moderately differentiated HNSCCs. CONCLUSION: Pretreatment DCE-MRI may be useful in predicting distant metastases in HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Contrast Media , Carcinoma, Squamous Cell/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging
17.
Brain ; 143(7): 2058-2072, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32671406

ABSTRACT

Intravascular injection of certain adeno-associated virus vector serotypes can cross the blood-brain barrier to deliver a gene into the CNS. However, gene distribution has been much more limited within the brains of large animals compared to rodents, rendering this approach suboptimal for treatment of the global brain lesions present in most human neurogenetic diseases. The most commonly used serotype in animal and human studies is 9, which also has the property of being transported via axonal pathways to distal neurons. A small number of other serotypes share this property, three of which were tested intravenously in mice compared to 9. Serotype hu.11 transduced fewer cells in the brain than 9, rh8 was similar to 9, but hu.32 mediated substantially greater transduction than the others throughout the mouse brain. To evaluate the potential for therapeutic application of the hu.32 serotype in a gyrencephalic brain of larger mammals, a hu.32 vector expressing the green fluorescent protein reporter gene was evaluated in the cat. Transduction was widely distributed in the cat brain, including in the cerebral cortex, an important target since mental retardation is an important component of many of the human neurogenetic diseases. The therapeutic potential of a hu.32 serotype vector was evaluated in the cat homologue of the human lysosomal storage disease alpha-mannosidosis, which has globally distributed lysosomal storage lesions in the brain. Treated alpha-mannosidosis cats had reduced severity of neurological signs and extended life spans compared to untreated cats. The extent of therapy was dose dependent and intra-arterial injection was more effective than intravenous delivery. Pre-mortem, non-invasive magnetic resonance spectroscopy and diffusion tensor imaging detected differences between the low and high doses, and showed normalization of grey and white matter imaging parameters at the higher dose. The imaging analysis was corroborated by post-mortem histological analysis, which showed reversal of histopathology throughout the brain with the high dose, intra-arterial treatment. The hu.32 serotype would appear to provide a significant advantage for effective treatment of the gyrencephalic brain by systemic adeno-associated virus delivery in human neurological diseases with widespread brain lesions.


Subject(s)
Brain/virology , Dependovirus , Disease Models, Animal , Genetic Therapy/methods , Genetic Vectors , alpha-Mannosidosis/genetics , Animals , Brain/pathology , Cats , Gene Transfer Techniques , Transduction, Genetic
18.
Insights Imaging ; 11(1): 84, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32681296

ABSTRACT

MRI has a vital role in the assessment of intracranial lesions. Conventional MRI has limited specificity and multiparametric MRI using diffusion-weighted imaging, perfusion-weighted imaging and magnetic resonance spectroscopy allows more accurate assessment of the tissue microenvironment. The purpose of this educational pictorial review is to demonstrate the role of multiparametric MRI for diagnosis, treatment planning and for assessing treatment response, as well as providing a practical approach for performing and interpreting multiparametric MRI in the clinical setting. A variety of cases are presented to demonstrate how multiparametric MRI can help differentiate neoplastic from non-neoplastic lesions compared to conventional MRI alone.

19.
NMR Biomed ; 33(11): e4386, 2020 11.
Article in English | MEDLINE | ID: mdl-32729637

ABSTRACT

The utility of diffusion kurtosis imaging (DKI) for assessing intra-tumor heterogeneity was evaluated in a rat model of glioblastoma multiforme. Longitudinal MRI including T2 -weighted and diffusion-weighted MRI (DWI) was performed on six female Fischer rats 8, 11 and 14 days after intracranial transplantation of F98 cells. T2 -weighted images were used to measure the tumor volumes and DWI images were used to compute diffusion tensor imaging (DTI) and DWI based parametric maps including mean diffusivity (MD), mean kurtosis (MK), axial diffusivity (AD), axial kurtosis, radial diffusivity, radial kurtosis, fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA). Median values from the segmented normal contralateral cortex, tumor and edema from the diffusion parameters were compared at the three imaging time points to assess any changes in tumor heterogeneity over time. ex vivo DKI was also performed in a representative sample and compared with histology. Significant differences were observed between normal cortex, tumor and edema in both the DTI and DKI parameters. Notably, at the earliest time point MK and KFA were significantly different between normal cortex and tumor in comparison with MD or FA. Although a decreasing trend in MD, AD and FA values of the tumor were observed as the tumor grew, no significant changes in any of the DTI or DKI parameters were observed longitudinally. While DKI was equally sensitive to DTI in differentiating tumor from edema and normal brain, it was unable to detect longitudinal increases in intra-tumoral heterogeneity in the F98 model of glioblastoma multiforme.


Subject(s)
Brain Neoplasms/diagnostic imaging , Diffusion Tensor Imaging , Glioblastoma/diagnostic imaging , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Glioblastoma/pathology , Rats, Inbred F344
20.
World Neurosurg ; 141: 123-130, 2020 09.
Article in English | MEDLINE | ID: mdl-32525092

ABSTRACT

Routine diagnostic magnetic resonance imaging (MRI) uses enhancement of the tumor tissue as a marker of malignancy in intracranial gliomas. However, several high-grade tumors do not exhibit enhancement, and, conversely, some low-grade gliomas do demonstrate enhancement. Hence conventional MRI has a limited role in accurate grading of gliomas. Advanced MRI methods that evaluate the tissue microstructure and tumor hemodynamics provide a better understanding of tumor biology and promise to provide more accurate grading. These advanced MRI methods include diffusion-weighted imaging, diffusion tensor imaging, diffusion kurtosis imaging, arterial spin labeling imaging, dynamic susceptibility contrast imaging, and dynamic contrast-enhanced imaging. This review focuses on the utility of these methods for better characterization and grading of nonenhancing gliomas, as it is more difficult to accurately devise an optimal treatment strategy for these tumors compared with enhancing gliomas.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Diffusion Magnetic Resonance Imaging , Humans , Perfusion Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...